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1. Introduction

The analysis of atmospheric moisture remains a challenging problem in
data assimilation today. Relative humidity (RH) varies on horizontal scales
that are smaller than tke typical separation distance of radiosondes over
Northern Hemisphere continents, and there are virtually no radiosonde measure-
ments over large portiors of the Southern Hemisphere and the Northern Hemi-

sphere oceans. Satellite observations may help to improve our knowledge of
the RH field.

Moisture information may be obtained from satellite sounding dzta by re-
trieval techniques similar to those used for temperature retrievals, or by use
of cloudiness information contained in satellite imagery. Since moisture (and
temperature) retrieval, at least from infrared radiances, is difficult in
cloudy atmospheres, there is a possibility that inference of humidity data
from cloudiness information may successfully supplement moisture retrieval
from radiance data. Heregqe study the inference of humidity profiles from
cloud data, using the 3DNEPH data base as the source of the cloudiness inform-
ation. The 3DNEPH (now RTNEPH) is a high resolution cloud data base produced
operationally by thejég‘ilr Force Global Weather Central,{AFGWC)li A coloca-
tion study of cloud data with radiosonde measurements of relative humidity is
used to develop and test a statistical method for inferring humidity profiles;
a global data impact study is used to assess the utility of this moisture in-
formation. In this report we review some ef the ‘previously developed methods
for inferring humidity from cloud cover data, describe the data base and pro-
cessing used in our colocation study, and discuss the development and testing
of the new method for inferring humidity. We thrn describe the data impact

test and summarize our results and conclusions.
2. Background ' -

Several different techniques for inferring relative humidity from cloud
information exist. They may be grouped into two categories: level-by-level
approaches, which use relationships between relative humidity and cloud cover
at a particular level or layer of the atmosphere, and profile apprcaches,

which infer vertical profiles of relative humidity from cloud information.




Of the level-by-level approaches, the one most widely used is described
in Chu and Parrish (1977). As implemented by Tibaldi (1982), humidity is de-
termined in the boundary layer (assumed to be 50 hPa thick) and three layers
in the troposphere between the boundary layer and 300 hPa from cloudiness ob-
servations (both from surface observers and satellite observations), using a

relationship of the form:
RH =M - A cos (r « %), (L

where RH is the relative humidity, n the fractional cloud cover, and the coef-

ficients M and A depend on the humidity layer (see Appendix A).

The AFGWC uses humidity - cloudiness relationships within its 3DNEPH (now
RTNEPH) analysis program. As described in Fye (1978), relative humidity is
expressed in terms of a condensation pressure spread (CPS), which is the pres-
sure increment an air parcel needs to be lifted to reach saturation. The con-
densation spread is then related to cloud cover by an empirically derived

curve for each mandatory pressure level (see Appendix A).

Rasmussen (1982) used 3DNEPH data to derive multiple regression equations
relating mandatory level relative humidity to cloud information. Separate re-

gression equations were used for the different mandatory levels.

Relationships between relative humidity and cloud cover are also used
within the interactive radiation parameterizatiors of some prediction

models. For example, Geleyn (1981) describes one such relationship as

RH - RH 2
n = max[0, ﬁ‘ﬁc—q ] (2)

where the critical relative humidity RH. depends on pressure (see
Appendix A). The above relationship is easily irnverted to obtain bogus humid-

ity from cloudiness.

Saito and Baba (1988) investigated level-by-.evel approaches in a coloca-
tion study over the western Pacific Ocean., The cloud cover data was derived
from infrared imagery observed by the GMS satellite. They arrived at a modi-
fied form of equation (2), in which a small but nonzero cloud cover was al-

lowed even for subcritical relative humidities.




Norquist (1988) investigated several of these level-by-level approaches
in a global colocation study using 3DNEPH data. Based on a comparison of the
Tibaldi, AFGWC, and inverse ECMWF schemes, he found the Tibaldi method to have
the smallest errors. He demonstrated the potential usefulness of bogus RH
data inferred from 3DNEPH cloud cover data with data assimilation experiments

in which the bogus RH was used to replace RH data measured by radiosondes.

A potential problem with all of these level-by-level approaches is the
rather large uncertainty of the cloud height assignment in most cloud cover
data, which will lead to errors in cloud cover - relative humidity relation-
ships. In addition, cloud cover at a given level is related to moisture (ond
other atmospheric variables) at other levels in some meteorological situa-
tions, most notably for the case of convective clouds. This problem is ad-
dressed by the profile approaches, which attempt to retrieve an entire vertic-

al profile of moisture from cloud cover data.

An example of the profile approach is the technique used at the Japanese
Meteorological Service and described in Kanamitsu (1984). Cloud information
including cloud cover, variability of cloud cover and cloud top are used to
identify one of 60 different categories, each of which is associated with a

typical relative humidity profile. The categories are defined a priori.

A similar approach was used by Mills and Davidson (personal communica-
tion, 1987), who used total cloud cover, the variance of cloud top tempera-
ture, and the height of maximum cloudiness to define categories with typical

RH profiles.

The aim of our regression study is to develop statistical methods to in-
fer RH profiles from the 3DNEPH cloud data base. We used the empirical ortho-
gonal functions (EOFs) of RH to determine the important features of the ob-
served RH profiles. The EOF coefficients were related te colocated cloud data
by means of multivariate linear regression equations. The data used in the
regression study was restricted to the North American continent, resulting in

a homogeneous sample of high quality radiosonde measurements. The data base

is described in more detail in the next section. Accesion For ]
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3. Data Base and Processing

The data base used in the colocation study consists of radiosonde and

cloudiness data over North America during February and June of 1979.

The radiosonde data were extracted from the final, reprocessed FGGE II b
data set, and subjected to an additional quality control. Both mandatory and
significant level data were used. A total of 2699 (2235) :oundings, for 97
stations were extracted from the FGGE data set for 00 UTC, 5 February through
00 UTC, 22 February (00 UTC, 14 June through 00 UTC, 28 June). The location
of the radiosonde stations are shown in Fig. 1. A preliminary investigation
using mandatory pressure levels revealed a large number of missing values at
1000 hPa and 850 hPa, and a dependence of the RH profile, when defined with
respect to pressure levels, on station elevation. For these reasons, the
relative humidity data were interpolated from the pressure levels to a
terrain-following coordinate system, and an EOF analysis was performed on the

result. The coordinate system was a modified sigma coordinate:
g = (p-pt)/(ps-pt), where p,. = 300 hPa and pg = surface pressure.

A total of 15 equally spaced levels were used between o=1 and 0=0.15. Ouly
soundings with enough measurements to allow this interpolation were used in
the EOF computations; this reduced the total number of soundings to 1918
(1724) for February (June). Given the EOFs, any relative humidity profile

(RH,, k = 1,15) may be expressed in terms of an EOF expansion as follows

15

RHk - RHk + j{ e Em,k ,

m=1

where Fﬁk is the climatological mean RH profile, e  the coefficient of the mth
LOF, and Em,k the value of the mtD EOF at level k. We computed the EOFs as
the eigenvectors of the reclative humidity covariance matrix. Two separate
sets of EOFs were computed for each month, one (denoted EOF-All) based on the
covariance matrix about the mean of all radiosondes in the extracted data set

for each month, another (denoted EOF-Bands) based on the covariance matrix




about the mean humidity profiles computed separately for three latitude bands
of width 10°, spanning 20°N to 50°N. The mean profiles and associated stand-
ard deviations are shown in Fig. 2 for EOF-All, and Fig. 3 for EOF-Bands. Ex-
cept for the February means, differences between the band statistics are
small. The profiles of the first three EOFs are shown in Fig. 4 and 5 for
EOF-All and EOF-Bands, respectively. The leading EOFs are similar for Feb-
ruary and June; EOF-All and EOF-Bands have basically the same structure. The
amount of variance explained by these EOFs is shown in Table 1. In comparing

numbers for EOF-All and EOF-Bands one must bear in mind that the total amount
of variance about the mean is somewhat smaller for EOF-Bands than EQF-All.
Table 1: Percent of variance explained by the RH EOFs. EOF-All and EOF-Bands

refer to the EOFs defined with respect to latitude-independent and
latitude-dependent mean RH profiles, respectively.

| February | June
EQF No. 1 EOF-All EQF-Bands 1 EQOF-All EQOF-Bands

I I l l
1 ! 54.4 | 51.5 | 44.6 { 45.1
2 } 22.6 f 23.4 | 21.6 | 21.1
3 | 8.0 | 8.7 | 10.4 ! 10.5
4 | 4.9 | 5.3 | 7.0 | 6.7
5 J 2.9 ] 3.2 } 4.4 | 4.5
6 | 1.9 | 2.1 [ 2.8 | 2.9
7 | 1.3 | 1.4 | 2.2 ] 2.3
8 ] 1.0 | 1.1 | 1.7 | 1.7
9 | 0.8 | 0.8 | 1.2 | 1.2
10 | 0.6 | 0.6 } 1.0 | 1.0
11 | 0.4 | 0.5 | 0.8 | 0.8
12 | 0.4 | 0.4 | 0.7 | 0.7
13 | 0.3 | 0.4 ! 0.6 | 0.6
14 ] 0.3 | 0.4 | 0.5 | 0.5
15 | 0.3 f 0.3 | 0.3 ! 0.3

The cloudiness data base used for this study is the Air Force 3DNEPH
analysis. The 3DNEPH data set is a global gridded data set with a resolution
of 47.6 km on a polar stereographic grid (the so-called 8P mesh grid). The
grid for each hemisphere is subdivided into 64 boxes, each of which contains
64x64 gridpoints. The data at each gridpoint consist of percent cloud cover
for total sky cover and for 15 layers in the vertical, as well as several

other parameters (cloud type, base and top heights, terrain height, and pres-




ent weather; see Appendix B for a detailed description of the parameters and
their recoding for this colocation study). 1In addition, a vertically com-
pacted set of cloud cover values, which correspond to boundary layer clouds
and cloud cover for layers surrounding the 6 mandatory levels between 1000 hPa
and 300 hPa were derived from the 15 layer values. The vertical compaction,
described in more detail in Appendix B, reduces the data volume without a sig-
nificant loss of information since the cloud cover values in the 15 3DNEPH
layers are partially redundant. The 3DNEPH data is derived primarily from IR
and visible satellite imagery, and supplemented with convertional surface,
radiosonde, and aircraft reports. For the present study we extracted 3DNEPH
data for the gridpoints closest to the extracted radiosonde stations; in addi-
tion to the values at the gridpoint itself (refe red to in the following as
central values), the neighboring 24 points were used to compute means and
standard deviations. Data were extracted for the 3DNEPH boxes 43, 44, and

45. The 69 sounding locations that fall within the extracted 3DNEPH boxes are

shown in Fig. 1 as stars.

4. Regression Study

The data base described in the previous section was used to develop and
test a new method to infer a RH profile from 3DNEPH data. The data set for
each month was subdivided into a dependent and independent sample; the former
was used to develop multiple regression equations for the EOF coefficients of
relative humidity, the latter was used to validate the regression equations

and to compute error statistics of the bogus RH data.

The dependent sample for February, which covers data from 00 UTC 5
February 1979 to 12 UTC 16 February 1979, was used for some exploratory, uni-
variate correlation calculations between 3DNEPH data and EOF coefficients.
Aside from identifying the most promising-looking predictors from the 3DNEPH
data set, these computations were used to assess the effect of stratifying the
sample into various subsets. One such stratification, based on the time of
day, showed correlation cnefficients to be consistently hijher for the 00 UTC
sample than for the 12 UIC, or the aggregate 00 UTC and 12 UTC sample. Con-
trol runs using a random subsample showed these differences to be signifi-
cant. The most likely reason is that the cloud data over the U.S. are more

reliable and less noisy at 00 UTC, because the primary data source of the
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3DNEPH is IR imagery and in the late afternoon the temperature contrast be- {

tween the land surface and the cloud tops is greatest.

Correlation coefficients between one of the 3DNEPH variables and the co-
efficients of either EOF 1 or 2 showed no consistent differences between lati-
tude bands (30°-40°N and 40°-50°N); similar correlation coefficients for EOF 3
were nonzero only in the 30°-40°N sample. Finally, these correlation coeffi-
cients of EOF 1 and 2 were consistently higher for the horizontally averaged
3DNEPH values than the corresponding central values, while the standard devia-

tions of the 3DNEPH variables showed no useful correlations at all.

A stepwise regression procedure was used to derive multiple regression
equations for the coefficients of EOF 1 and 2. Stepwise regression is a meth-
od for determining the "best" set of predictors (Neter and Wasserman, 1974,
Chapter 11; Draper and Smith, 1966, Chapter 6). In our case, some of the
3DNEPH data have large biases or random observational errors and many of the
variables are intercorrelated. We have the original data, the vertically com-
pacted data, as well as the local area average and variance of the original
and vertically compacted data. On the dependent sample, we are sure to ex-
plain more of c(he variance of the EOF coefficients for each predictor we add
to our regression equations. However, using all potential predictors is sure
to overfit the data, resulting in poorer performance on the independent sam-

ple. Therefore we must employ some means of deciding which predictors to use.

The stepw.se regression procedure iteratively adds and deletes variables
from the prediction equation. At each step, all possible predictors not yet
included in the regression are cor<idered for inclusion. The one reducing the
unexplained vaiiance the most is added to the regression if this reduction in
variance is significant, as judged by the coefficient of partial correlation,
which is a type of F statistic (op. cit.). Since the predictor added may be
highly correlated with a previous predictor, all current predictors are con-
sidered for deletion. The predictor having the smallest partial correlation
is deleted if the associated reduction in variance is so small as to be insig-
nificant. The iteration stops when no  further changes are made. The algo-
rithm we used is based on that of Efroymson (1960). Based on the exploratory,
univariate correlation statistics, some preliminary choices of predictors were

madz2: In order to usc the best available data for the development of the mul-




tiple regression equations, only 00 UTC data was used; multiple regression
equations were based on the horizontal mean values only (tests of multiple re-
gression equations using central values resulted in less skillful predictions
of the EOF coefficients); multiple regression equations for EOFs 1 and 2 were
developed without any stratification based on latitude. The multiple regres-
sion equation for EGF 3 for the 30°-40°N latitude band was able to expluin
only 30% of its variance. Since EOF 3 only contributes a small amount of the
RH variance, its prediction was not pursued further. Two separate regression
equations were developed for each EOF, one using only the vertically compactesd
~.loud cover data, and another using all mean 3DNEPH variables. In the latter
case, cloud cover data for 3DNEPH layers were added to the predictor sets by
the stepwise regression algorithm only after the vertically compacted predict-
ors were exhausted. The corresponding increases in the amount of the explain-
ed variance were rather modest, however, because of high correlations between
the vertically compacted and the layer data. An example of this is shown in
Fig. 6: scatterplots of EOF 1 coefficients versus cloud cover in layer 10
show a relatively high correlation, whereas the residuals from the regression
equation using the vertically compacted data are already much less correlated,
and including layer 10 cloud cover in the regression then removes the remain-
ing correlation. Table 2 shows the predictor sets and the fraction of the ex-
plained variance (r2) for the coefficients of EOF 1 and 2, both for the global
mean and latitude-dependent mean (EOF-All and EOF-Bands), for February and
June. We note that the r2
EOF-All.

values are slightly lower for EOF-Bands than

An evaluation of these regression equations was performed both for the
dependent sample and the independent sample. For a comparison of the regres-
sion equation and existing methods of estimating humidity the bogus RH pro-
files were interpolated from the o-coordinate system to mandatory pressure
levels. For the purposes of interpolating, RH wis assumed to vary linearly as
a function of the logarithu of pressure. The interpolated bogus RH profiles
were then compared with colocated RAOB data, along with bogus RH obtained by
existing methods. Bias and rmse statistics were computed over all colocated
3DNEPH data points, even if the cloud cover used in the inference was zero: to
reduce the positive bias likely to result from this procedure, the bogus
humidity predicted by the existing methods was medificd to be no higher than

climatology in cases of zero cloud cover. A recalculation of the statistics,

8




Table 2: Predictor sets and r? for the regression equations. Results are
shown separately for EOF 1 and 2. The predictor set of the verti-
cally compacted set is shown first, additional 3DNEPH data of the
second regress%on equation are shown in the second column; n denotes
cloud cover, r° the fraction of variance explained by the

regression.

Vertically compacted data Full 3DNEPH data set
Regression 2
equation | Predictors | r? | Predictors i x

! | I }
EQF 1. i I | |

! I ! I
EOF-All |n at 850, 700, 500 hPa | |n at layer 10 |
February | ].554 | | .568

| I ! ]
EOF-Bands |n at 700, 500, 400 hPa | |n at layer 10 |
February | |.514 | {.530

! ! | |
EQOF-All |m at 700, 400 hPa | |n at layer 15 |
June | |.610 | |.623

| | ! |
EQF-Bands |n at 700, 400 hPa | |n at layer 15 i
June | | .606 ) |.618

| | | |
EOF 2; | ! | |

| I | |
EQF-All in at 850, 700 | In at layer 9 |
February | 500, 300 hPa |.413 | |.434

| | | {
EOF-Bands |n at 850, 700 | |n at layer 9 |
February | 500, 300 hPa 1.394 ] |.414

| l I I
EOF-A1ll | terrain hLeight | |n at 700 hPa |
June |n at 850, 500 hPa | |layer 8, 12 |

| 1.333 |low cloud type |.484

I | | !
EOF-Bands |terrain height | {n at layer 8,12 |
June In at 700, 400 hPa |.328 [low, middle cloud type {.481

excluding all cases in which cloud cover values used as predictors were less
than 10% showed that the results were not significantly affected by the use of

cases with zero cloud cover,

Table 3 shows the RMS error and bias of three existing methods for the

time period corresponding to the dependent sample in February. The smaller
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sample sizes at the 1000 hPa and 850 hPa levels shown in Table 3 are due to
observations with small surface pressures, i.e. high station elevation. As an
independ==t reference, errors associated with climatology are shown as well;
climatology is defined here as the average over all radiosonde observations in
the extracted set within the 3DNEPH boxes, computed separately for each

month. Errors for the GWC and Tibaldi method are roughly comparable; hcth me-
thods show some skill when compared to climatology. The inverse ECMWF formula
suffers from a rather large bias. The corresponding statistics for the bogus
RH profiles based on the regression equations for EOFs 1 and 2 are shown in
Table 4. The smaller sample sizes at the 400 hPa level shown in Table 4 are
caused by observations with surface pressure of above 967 hPa, for which the
top sigma level is below 400 hPa. It can be seen that the regression equa-
tions result in smaller errors than the existing methods; differences between
the different regression equations, i.e. those for EOF-All or EOF-Bands, and
those using the vertically compacted or the full 3DNEPH data set are generally

small.

Table 3: Bizs and RMS errors for the existing methods, for the dependent
sample in February. The sample sizes for each statistic are shown in
parentheses. The ro+ labeled "Average" is an unweighted average of the
level values.

inverse

AFGWC Tibaldi ECMWF Climatology
| Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE |

1000 hPa j] 12.01 17.87 | 12.03 17.71 | 35.32 40.96 | 7.36 21.49
| (82) I (82) | (82) [ (211) |

850 hPa | 8.85 26.09 | 12.45 27.69 | 19.69 31.02 | 5.71 32.45
| (276) | (276) | (276) | (440) !

700 hPa | 14.44 31.50 | 12.30 30.18 | 25.08 37.31 | 2.47 33.28
| (302) | (302) | (302) | (470) |
500 hPa I 1.21 26.13 | 3.92 26.21 | 23.35 34.48 | -.77 131.61 |
| (303) ] (303) | (303) I (468) I

400 hPa | -5.33 23.24 |} 4.25 23.48 | 28.95 37.33 | -2.50 28.89
| (303) | (303) | (303) | (468) |
Average | 6.24 24.97 | B8.99 25.05 | 26.48 36.22 | 2.45 29.54 !

10
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Table 4: As Table 3, but for the regression equations. Set 1 and ? refer to
the vertically compacted and the full 3DNEPH data set, respectively; EOF-
All and EOF-Bands denote EOFs based on latitude-independent and latitude-
dependent mean RH profiles, respectively,

EOF-All, set 1 EOF-All, set 2 EOF-Bands,set 1 EOF-Bands,set 2

| Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE |
1000 hPa | 10.83 18.80 | 10.53 18.72 | 9.37 18.07 | 9.14 18.12 |
| (82) | (82) | (82) | (82) |

850 hPa | 2.13 23.27 | 1.99 23.07 | 1.43 22.46 | 1.36 22.38 |

| (276) | (276) | (276) | (276) |

700 hPa | -.77 26.58 | -1.18 26.36 | -1.00 26.28 | -1.21 25.82 |

| (289) | (289) | (289) | (289) |

500 hPa | 1.31 25.44 | .69 25.28 | 1.03 25.06 | .63 24.96 |

| (291) j (291) | (291) | (291) |

400 hPa | 4.20 22,40 | 2.78 22.88 | 6.17 21.94 | 5.18 22.44 |

| (106) | (106) | (106) | (106) [

Average | 3.54 23.30 | 2.96 23.26 | 3.40 22.76 | 3.02 22.75 |

Table 5 and Table 6 show the verification statistics for the independent
sample in February, which covers the period from 00 UTC, 17 February, through
00 UTC, 22 February. Because of the small differences between the regression
equations using the vertically compacted and the full 3DNEPH data set, only
the results for the former are shown here. The results are qualitatively the
same for the two sanples in February. As is to be expected, the errors for
the regression equations are somewhat larger for the independent than the de-

pendent sample, but they are larger for the existing methods, as well.
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Table 5: As Table 3, except for the independent sample in February.

inverse
AFGWC Tibaldi ECMWF Climatology
| Bias  RMSE | Bias RMSE { Bias RMSE | Bias  RMSE |
1000 hPa | 2.29 17.78 | 2.65 17.20 | 26.10 32.72 | -7.74 20.80 |
| (104) | (104) | (104) ! (230) [
850 hPa | 12.76 29.03 | 15.65 27.27 | 23.10 35.03 | 1.56 33.51
[ (254) I (254) | (254) [ (412) |
700 hPa } 20.59 34.14 | 16.94 32.33 | 30.97 41.38 | 4.44 33,59 |
} (296) | (296) | (296) | (457) ]
500 hPa ] -7.90 27.55 | 11.17 29.26 | 29.84 39.52 | 4.65 32.06 |
I (288) | (288) | (288) I (458) |
400 hPa | -3.46 27.63 | 7.58 27.50 | 30.49 41.49 | -.23 29.96 |
| (298) | (298) { (298) | (469) |
Average | 8.4 27.22 | 10.80 27.59 | 28.10 38.03 | 0.54 29.98 |
Table 6: As Table 4, except for the independent sample in February. Results

are shown for the regression equations based on the vertically
compacted 3DNEPH data set only.

EOF-All EOF-Bands
| Bias  RMSE | Bias  RMSE |
1000 hPa | -1.01 17.81 | -1.75 18.35 |
l (104) [ (104) |
850 hPa j 3.81 25.39 | 3.79 26.44 |
I (254) l (254) |
700 hPa | 5.36 26.60 | 5.01 27.31 |
| (284) I (284) |

500 hPa | 7.86 25.87 | 7.21 25.33
| (276) | (276) !
400 hPa | 5.26 24.93 | 4.39 23.76 |
| (71) | (71) |
Average ] 4.26 24.12 | 3.73 24.24 |

The error statistics for the existing methuds computed here can be com-
pared to the results obtained hy Norquist (1988) in his global colocation

study for February of 1979. His results are similar in that the errors of the
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AFGWC and Tibaldi m:thods are roughly comparable, with slightly smaller errors
for the Tibaldi method. In general, his :results show somewhat smaller errors
for all three methods, except for the AFGWC method at 400 hPa, which shows
smaller errors in our results. The positive bias of the inverse ECMWF method
found here is consistent with his results, and also consistent with the re-

sults of Saito and Baba (1988).

Tables 7 and 8 contain the verification statistics for the independent
sample in June, which covers the period 12 UTC, June 17, through 00 UTC, June
24. They show a smaller variance about climatology than for February, in
agreement with the results shown in Fig. 2. The errors for the existing
methods, on the other hand, show little change compared to February, resulting
in only marginal or no skill over climatology for the AFGWC or the Tibaldi
method. The errors of the regression equations are smaller for June than for

| February, and they are consistently smaller than those of climatology or the

existing methods.
v
Table 7: As Table 5, but for the independent sample in June.
inverse
AFGWC Tibaldi ECMWF Climatology
| Bias RMSE | Bias  RMSE | Bias  RMSE | Bias RMSE
1000 hPa |] 6.82 16.95 | 2.72 15.34 | 27.68 33.35 | -3.31 17.62 |
| (118) | (118) | (118) (298) |
850 hPa | 8.16 21.47 | 7.50 21.70 | 17.15 25.59 -2.06 23.38 |
| (540) | (540) | (540) (774) [
700 hPa | 20.20 30.90 | 15.74 28.29 | 30.06 38.10 4.11 27.31
} (585) | (585) | (583) | (809) |
500 hPa | 14.77 27.44 | 19.99 31.21 | 34.80 42.09 | 14.59 30.26 |
| (564) | (564) | (564) (784) |
400 hPa | 10.84 25.09 [ 22.76 31.90 | 39.03 46.45 16.88 28.89 |
! (584) | (584) I (584) I (804) |
Average | 12.16 24.37 | 13.74 25.69 | 29.74 37.12 | 6.04 25.49 |
13
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Table 8: As Table 6, but for the independent sample in June.

EOF-all EOF-Bands

| Bias RMSE | Bias RMSE |

1000 hPa -2.57 16.13 -4.06 16.04 |
(118) (118) |

850 hPa | -6.51 20.88 |} -6.30 20.80 |
| (540) | (540) |

700 hPa -5.54 26.06 -4.79 25.88 |
(557) (557) |

500 hPa | 3.95 23.60 | 3.52 23.55 |
| (539) | (539) 1

400 hPa 7.82 22.85 8.06 22.63 |
(196) (196) |

Average | -.57 21.87 | -.71 21.78 |

In summary, we identified regression equations for the first two EOFs of
relative humidity; several different possibilities were investigated which
differed in the definition of the RH EOFs and in the subset of the 3DNEPH data
considered as predictors. Based on tests using the dependent and independent
samples, it was found sufficient to use regression equations for the coeffi-
cients of EOF-All, i.e. the EOFs based on the mean RH profile computed for all
latitudes between 20° and 50°N, and to use the vertically compacted, horizon-
tally averaged 3DNEPH data set. Comparison with existing level-to-level me-
thods for inferring RH from cloud cover showed the regression equations to
perform better for both the dependent and independent samples. It should be
noted that the verification was performed over the same geographical region
for which the regression equations were developed, and that no attempt was
made to tune the existing methods to improve their performance. The compari-
son with the level-to-level methods was performed primarily to provide some
independent reference point for the errors associated with the regression
equations, and to demonstrate the feasibility and potential utility of the

approach.

5. Data Impact Study

The method for inferring relative humidity from 3DNEPH data described in
the previous section was used in a data impact study using the global data as-
similation system (GDAS) of the Air Force Geophysics Laboratory (AFGL). The

AFGL GDAS consists of three major components: a global spectral forecast model
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(GSM), an optimum interpolation analysis (0OI), and a nonlinear normal mode
initialization (NMI). The global spectral model is based on the NMC GSM de-
signed by Sela (1980); the physics routines were taken almost intact from NMC
(circa 1983), whereas the hydrodynamics were completely redesigned (Brenner et
al., 1982, 1984). The optimum interpolation analysis was developed by
Norquist and others (Norquist, 1982b, 1983, 1984, 1986; Halberstam et al.,
1984), and was originally based on the OI procedures described in Bergman
{1979) and McPherson et al. (1979). The normal mode initialization was based
on the NMC NMI (Ballish, 1980) and is described in Norquist (1982a) and Tung
(1983).

The design of the data assimilation experiment closely follows that de-
scribed in Louis et al. (1987). An assimilation experiment consists of as-
similation runs for two 7-day periods in the Special Observing Periods (SOPs)
of the FGGE year: February 8 through 15, 1979, and June 17 through 24, 1979.
Each assimilation run consists of a series of assimilation cycles using a 6
hour update cycle. Forecasts out to 4 days were produced from the initialized
analyses at days 3, 5, and 7 of the assimilation runs. The assimilation pe-
riod of the June assimilation run is identical with the independent sample for
that month used in our colocation study. In February, the data assimilation

period overlaps the dependent sample used in the regression study.

In this section we will present mostly differences between an assimila-
tion experiment using the 3DNEPH based bogus RH data (referred to as NEPHSAT),
and a control assimilation experiment using only the standard FGGE data set
(STATSAT). The only moisture data used in STATSAT were radiosonde observa-
tions; for an in-depth discussion of the control run the reader is referred to
Louis et al. (1987). The OI analysis program had undergone some minor changes
between the STATSAT and NEPHSAT experiments: Changes were made to the quality-
control procedures of drop-windsonde data, and to the procedures to solve the
normal equations of the analysis program (Hoffman et al., 1988). This impact
test differs from the one reported in Norquist (1988), in which bogus RH data
was used to replace, rather than supplement, radiosonde measurements. The
present OSE is designed to test whether the potential impact demonstrated by
Norquist can be observed in a more realistic simulation of the operational

environment.
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The 3DNEPH based bogus RH data were generated for all half-mesh points
located between 30°N and 50°N (since only those latitudes were used in the
derivation of the regression equations); the errcr statistics for these data,
which are needed as input to the moisture OI, were generated from the inde-

pendent sample of the colocation study (see Appendix C for details).

The impact of the 3DNEPH data is most clearly seen in Fig. 7, which shows
differences of analyzed RH at 850 hPa between NEPHSAT and STATSAT for the
February assimilation run. The first analysis produced in February (February
8 at 06Z) shows differences to be essentially confined to the region influ-
enced by the 3DNEPH data, i1.e. 30°-50°N; an exceptlion to this are the high
latitude regions of both hemispheres, where sizable differences occur, due
most probably to differences in the Ol program between the two experiments.

As is obvious from the succeeding panels in Fig. 7, the differences within the
30°-50°N latitude band as well as outside it grow with time. By 12Z on
February 10, i.e. after 2 1/2 days of assimilation, the RH differences have
spread over the entire globe, with the largest differences occurring at high
latitudes; at that time, the region where bogus RH data were used in NEPHSAT
is no longer visibly different from the rest of the world in these difference
maps. This fairly rapid growth and spread of the RH differences indicate that
the impact of the 3DNEPH data is within the noise level of the system, since
the initial differences are clearly caused by both the different input data
and the different analysis programs. During the early part of the assimila-
tion run, however, the RH differences within the 30°-50°N latitude band can be
related to the cloudiness data used in NEPHSAT. Plots of the 700 hPa cloud
cover (Fig. 8), which is the predictor with most influence on bogus RH data
for the 850 hPa level, reveal some areas of little cloud cover, particularly
over the middle and East Atlantic, which correspond to areas where the 850 hPa

NEPHSAT analyses are drier than the control.

The analyses of geopotential height are quite similar in the two experi-
ments. During February, differences in the Northern Hemisphere are localized
and of small amplitude (less than 100 m at 500 hPa, 150 m at 1000 hPa)
throughout the entire assimilation run; in the Southern Hemisphere, large amp-
litude, small scale difference. are evident near the pole, which are the re-
sult of the differences in the analysis programs and not related to the use of

bogus RH data.
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To assess the quality of the analyses and the forecasts produced from
them, colocation statistics between the gridded fields and a set of verifying
radiosonde observations were computed. The radiosonde observations used in
the regression study were extracted from this data set. Fig. 9a shows the
global rms error of relative humidity for NEPHSAT and STATSAT analyses and
forecasts for February. Although the NEPHSAT errors are slightly smaller than
those of STATSAT for most of the analyses, these differences (NEPHSAT-STATSAT)
are smaller than the day-to-day variations of the analysis differences
(analysis-RAOB). The forecasts do not indicate one to be superior to the
other. The same general conclusions hold if one computes these statistics of
just the Northern Hemisphere extratropics, or even just over North America
(Fig. 9b and c), where the beneficial impact of the 3DNEPH data would be ex-
pected to be largest. Comparing the magnitudes of the rms errors shown in
Fig. 9 with those of Table 6 might explain part of the reascn fur this appar-
ent lack of improvement: the typical analysis errors are smaller than, and the
typical 12-hour forecast errors are only slightly larger than, the colocation
errors of the bogus RH data. The quality of the bogus RH data is thus compar-
able to that of the first guess, resulting in only a small positive impact
even in radiosonde-void regions. The generally inconclusive results of the

850 hPa radiosonde statistics hold for other levels, as well.

The results from the June assimilation run are quite similar to those for
February. Difference maps of RH, shown in Fig. 10, reveal the impact of the
cloud data in the first analysis time periods, along with large diffferences
near the South Pole, which are related to the different analysis program. As
was the case in February, the differences spread quickly over the entire
globe, until at day 2 1/2 the region with cloud data input is no longer dis-
tinguishable from the rest of the globe. The 3DNEPH cloud cover data shown in
Fig. 11 shows some features that can be related to the RH differences, in par-
ticular an area of positive RH differences and high values of cloud cover at
150°w.

The radiosonde statistics for the June assimilation also give no clear
indication that the NEPHSAT forecasts have smaller RH errors than there £
STATSAT.
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6. Summary and Conclusions

Based on a colocation study of radiosonde RH measurements and 3DNEPH
cloudiness data over North America, we developed regression equations for the
first two EOFs of relative humidity. The regression equations predict the co-
efficients of EOF-All, i.e. the EOFs based on the mean RH profile computed for
all latitudes between 20° and 50°N, from the vertically compacted, horizont-
ally averaged 3DNEPH data set. The regression equations performed better than
existing level-to-level methods for inferring RH from cloud cover. Although
the verification was performed over the same geographical region for which the
regression equations were developed, and no attempt was made to tune the
exlsting methods to improve their performance, this comparison establishes the

feasibility of the approach.

The utility of the bogus RH data for operational data assimilation was
investigated in a global observing system experiment, in which bogus RH data
were supplied to the moisture analysis in the 30°-50°N latitude belt. The im-
pact of the 3DNEPH data was evident in analyses in the early part of the as-
similation runs; at later times, it was more difficult to separate the effécts
of the bogus RH data from other differences between the NEPHSAT and control
OSE. Comparisons of the analyzed and forecast RH with verifying radiosonde
data did not indicate a measurable positive impact of -the bogus RH data. The
inconclusive results from this OSE should not be regarded as definitive, how-
ever; we address the reasons for the lack of positive impact, and suggest pos-

sible extensions tou the present study in the following.

One of the obvious shortcomings of the present OSE is the limited geo-
graphical extent of the bogus RH data. In future studies, the RH profile ap-
proach could be extended to produce a global bogus RH data set by repeating
the regression study performed here for diiferent regions c¢f the globe. Dif-
ferent EOFs, and different regression equations would then be used in dif-

ferent regions.

Other limitations of the OSE are related to the data assimilation system
itself. Among those the relatively coarse resolution of the analysis and
forecast, the use of an adiabatic NMI, and of a very simple moist physics
package in the GSM are the most significant obstacles to an effective assimil-

ation of moisture data. There are several potential remedies to these short-
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comings: using a diabatic NMI, in conjunction with a moisture spinup procedure
as suggested in Donner (1988) would minimize the rejection of initial moisture
data by the forecast model. Improvements to the physics package of the GSM
are also necessary to limit the error growth during the assimilation cycle and
the longer range forecasts produced from the analyses; the physics package
currently being implemented and tested by AFGL is expected to improve this as-
pect of the GDAS.

Perhaps the most serious limitation to the usefulness of the data are the
relatively large observation errors of the bogus RH, which are larger than the
globally averaged errors of the current RH analyses. Even with the current
error levels, however, some beneficial impact should be realizable in other-
wise data-void areas. 1t may also be possible to reduce the errors of the
bogus RH data with changes in the regression approach, such as the definition
of the EOFs or the preprocessing of the cloud data. However, for significant
reductions of the observation errors, it will be necessary to take account of
the fact that there is no one-to-one correspondence between relative humidity
and cloud cover, and to include other atmospheric parameters (e.g., static

stability, vertical motion) in the problem.
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Appendix A: Existing cloudiness to humidity conversion techniques

Three existing methods of estimating relative humidity on mandatory pres-
sure levels were implemented in our colocation study. All three methods were
used with the horizontal mean values of the vertically compacted 3DNEPH cloud
cover corresponding to each mandatory pressure level. 1In cases of zero cloud
cover, the smaller of the critical relative humidity and climatology was used
as the bogus RH. In the case of the Tibaldi and inverse ECMWF methods, which
require knowledge of the surface pressure, the surface pressure of the co-

located radiosonde observation was used.

A.1 Tibaldi M:thod

Equation (1) was applied to four humidity layers j=1,4, where the lavers
are defined by Pj =P < Pi+1: with the Pj and the coefficients M
Table A.1l.

i Aj given in

Table A.l1: Parameters of the Tibaldi method

] I Pj ! Mj | Aj |
1 | Psurface | .80 | .20
2 : py - 50 hPa : .75 : 15 :
3 : Py - (py-pg)/3 : .60 I .15 :
4 : Py - (Py-Ps5)/3 : .55 : .10 :
5 : 300 hPa : : :

A.2 AFGWC method

This method is based on empirical relationships between the cloud cover
and the condensation pressure spread (CPS), which are defined for the man-
datory pressure levels 850, 700, 500, and 300 hPa (Table A.2; see Norquist,
1988, for a graphical display of the curves). We used the 850 hPa curve at
1000 hPa and the average of the 500 and 300 hPa curves at 400 hPa. The CPS is
related co the dew-point depression (DPD) through the approximate
relationship:
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DPD = CPS / (a, + ay(p/P,) + az(p/po)‘?) '
where pP,=1000 hPa, a,=4.9 hPa/K, ay=.93 hPa/K, and as=9 hPa/K. To convert the

dew point depression to relative humidity, the temperatures of the colocated

radiosonde were used.
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Values of condensation pressure spread (CPS,

Table A.2

in hPa) as a function of cloud

cover, for the mandatory pressure levels at 850, 700, 500, and 300 hPa.

entry in a particular row and column of these tables is the CPS corres-
ponding to the cloud cover (in %) obtained by adding the labels of the row

and column; the entry in the first column of the second row corres-

e.g.,

ponds to 11% cloud cover.

P = 850 hPa
1 2
0 114.2 111.
10 88.0 85.
20 66.6 65.
30 53.1 52.
40 44,2 43,
50 36.2 35.
60 31.9 31.
70 27.5 27.
80 22.5 21.
90 13.6 12.
P = 700 hPa
1 2
0 107.2 105.
10 91.7 90.
20 75.2 73.
30 60.0 58.
40 48.8 47.
50 40.7 40.
60 37.2 36.
70 32.8 32.
80 27.5 27.
90 18.7 17.
P = 500 hPa
1 2
0 100.2 99.
10 92.1 91.
20 79.4 77.
30 66.7 65
40 54.4 52,
50 45.5 44,
60 39.6 39.
70 35.5 35.
80 29.9 29,
90 19.6 18.
P = 300 hPa
1 2
0 96.2 95
10 88.0 87
20 79.0 77
30 66.7 65
40 54.8 53
50 45.5 44
60 39.6 39.
70 35.4 35
80 29.7 28
90 19.5 18
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A.3 Inverse ECMWF method

Equation (2) was inverted to yield
| RH - RH, + 71/ / (1 - RH)

where RH (relative humidity) and n (cloud cover) are dimensionless, and RHC,
the critical RH is given by

RH, =1 - ac’ (1-0') (1 + B(o’'-1/2) ) ,
1/2
with a'-p/ps, a=2, and f=3 .

Appendix B: The 3DNEPH data base

The 3DNEPH analysis as described in Fye (1978) provides the following
data at each grid point: terrain height (in tens of meters), total cloud
cover (to the nearest percent), cloud cover for 15 layers (to the nearest 5
percent), minimum cloud base and maximum cloud top ( in WMO code 1677),
cloud type for low, middle, and high clouds (in AFGWC codes), and present
weather (in WMO code 4677, divided by 10). The vertical structure of the
3DNEPH layers is shown in Table B.1.

Table B.1
Vertical Structure of the 3DNEPH layers.
Adapted from Fye (1978)

Compacted
Layer Number Upper Boundary Height (m) Layer
| ) Surface [ |
| | I |
] 1 | 46 AGL | LOW {
| 2 | 91 AGL [ LOW (
| 3 [ 183 AGL | LOW |
i 4 | 305 AGL | LOW |
] 5 | 610 AGL | 1000 hPa |
] 6 } 1067 AGL/MSL | 1000 hPa |
j 7 | 1524 MSL ! 850 hPa |
i 8 i 1981 MSL | 850 hPa |
I 9 | 3048 MSL | 700 hPa |
| 10 ! 4267 MSL [ 700 hPa |
| i1 i 5486 MSL | 500 hPa |
| 12 | 6706 MSL | 500 hPa !
| 13 ] 7925 MSL | 400 hPa !
} 14 J 10668 MSL J 300 hPa !
] 15 ] 16764 MsSL | 300 hPa !
1 | 1 !
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Of these, all but the present weather information were used in the co-
location stud;. Some recoding was performed to allow a quantitative analy-
sis. Cloud cover values that denoted "thin clouds" were set to zero unless
they were at layers 13 or above. The minimum cloud base and maximum cloud top
codes were converted to heights in meters. The cloud type information was re-
coded such that missing information, i.e. no clouds, was assigned a value of
zero, cumuliform cloud types a value of 10, mixed cumuliform and stratiform
cloud types a value of 15, and stratiform cloud types a value of 20. Ver-
tically compacted cloud cover values were computed assuming maximum overlap;
the 3DNEPH layers assigned to the compacted cloud cover layers are shown in
Table B.1. Except for the low cloud value, the vertically compacted cloud
cover values were computed by assigning the terrain-following (AGL) 3DNEPH
layer cloud cover values to the corresponding constant altitude (MSL) layers
in the case of elevated terrain. In order to compute horizontal averages, the
terrain-following 3DNEPH layer values were also remapped to equivalent con-
stant altitude layers. Horizontal averages and standard deviations were
computed over 5x5 grid pcints centered around the grid point closest to each
colocated radiosonde station, using a 1-2-1 weighted average in both direc-
tions. For the colocation study data was extracted from 3DNEPH boxes 43, 44,
45. For central gridpoints near box boundaries, averages and standard devia-
tions were computed over fewer than 25 points. The OSE used data in all

3DNEPH boxes between 30°N and 50°N.
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Appendix C: Error statistics of the bogus RH data

The bogus RH data was used in the moisture OI, with error statistics that
were estimated from the independent sample of the colocation study. Different
error statistics were used for February and June. The observational error
standard deviatious (aN) were estimated from the RMS colocation errors (ac,
viz. Tables 6 and 8), using the relationship (Bergman, 1978, eq 12):

2 2
GN - OC - 0R2
with an assumed RAOB error (aR) of 58%. This same RAOB error was used in the

moisture OI.

The vertical error correlations (Tables C.1 and C.2) were computed by
first computing a colocation error covariance matrix, using the colocation
errors of the EOF coefficients and the RH EOFs; the assumed RAOB error covari-
ance matrix was then subtracted, and correlations computed from the resulting
matrix. RAOB errors were assumed to be uncorrelated in the vertical,
resulting in an error matrix with nonzero elements only along the diagonal,
with a magnitude corresponding to a 5% error. The colocation error covariance
between two levels k,£ is related to the EOF coefficient errors by the fol-

lowing relationship:

where €r.k denotes the colocation error of RH at level k, ‘E.m the colocation
error of EQF coefficient m, and Em,k the amplitude of EOF m at level k. It
was assumed here that the coefficient errors of two EOFs are uncorrelated
(which is strictly true only for the dependent sample). The above equation

follows from the property of the EOFs that any RH profile may be written as:
15

RHy = RH + “m Emx
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where RHk is the climatological mean profile, and ey the coefficient of the
m™" EOF.

Finally, horizontal error correlation functions were derived from colo-
cation errors. Error correlations were computed for distance bins of 200 km
width., Results showed anomalously high values for the surface level out to
large distances which were caused by a diurnally varying bias. Because of
this bias, bogus RH values at the surface were not used, and curves were
fitted to error correlstion values that were averaged over the remaining
levels. The fitted curves were of the form exp(-d/k), where d is the separa-
tion distance, and k is 290 km (230 km) for February (June).
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Fig. 2: Mean and standard deviation relative humidity profiles for EOF-All
for February (a) and June (b).
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LONGITUDE | OEGREES ERST )

Fig. 7: Contour plots of RH differences between NEPHSAT and STATSAT analyses

for February 8, 06Z (a), February 8, 12Z (b), February 9, 00Z (c), and
February 10, 12Z (d). Contours are drawn every 25%, the zero contour is
suppressed, and negative values are dashed.
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Continued.
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Fig. 8: Contour plots of 3DNEPH cloud data for February 8, 12Z (a),
February 9, 00Z (b), and February 10, 12Z (c). Contours drawn at 25, 50,
and 75%.
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Fig. 10: As Fig. 8, but for June 17, 06Z (a), June 17, 12Z (b), June 18, 00Z
(c), and June 19, 12Z (d).
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Fig. 10: Continued.
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Fig. 11: Continued.
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